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Genetic association, case–control studies are becoming a major instrument in the attempt to identify
disease susceptibility markers of complex diseases. However, a major drawback of population-based
studies of genetic association is the confounding effect of the population subdivision. We developed a
statistic named T-value that estimates the differential transmission of marker alleles from heterozygous
parents to the affected offspring, based on population data. Our method does not assume Hardy–
Weinberg equilibrium and it can be used in very different population structures. A great advantage of this
approach is that the genetic structure of the population can be assessed with a few unlinked loci and using
classical population genetics theory (ie Wright’s F-statistics). Four general models, assuming either one
population with random mating, or one population without random mating, or several populations with
random mating within them, or several populations without random mating within them, were developed
to determine the behavior of the T-value under different mating conditions. Although a complete
knowledge of the population structure is ideal to choose the best model, the simulations show that for a
total inbreeding of 0.30 or less the last three models gave very similar estimates of the T-value. The model
that assumed that total departure of Hardy–Weinberg proportions is due to population subdivision was
the most robust under different scenarios of population structure. In sum, this study describes a novel
procedure that can be used to identify the transmission of disease susceptibility markers in population-
based studies.
European Journal of Human Genetics (2004) 12, 105–114. doi:10.1038/sj.ejhg.5201099

Keywords: case–control studies; transmission disequilibrium test; genetic epidemiology

Introduction
Understanding the genetic basis of human diseases is a

major goal of the modern genetic research. For genetically

simple diseases like those with a pattern of Mendelian

inheritance, that is, high penetrance and early onset,

linkage analysis is a simple approach to detect the

cosegregation of a marker locus and the disease through a

pedigree. Unfortunately, the monogenic diseases are only a

small fraction of all the human diseases in the world today,

where the most common diseases, that is, cardiovascular

disease, cancer, and neuropsychiatric disorders, have a

polygenic basis and show complex interactions with

environmental factors.1,2 Other complications, such as

unclear Mendelian inheritance, low penetrance, and late

onset, restrict the capacity of the traditional linkage

analysis to uncover the genetic basis of many human

diseases. Thus, there is a need to develop novel analytic

tools that can immerse traditional family-based genetic

analysis of human disease into population-based human

studies of complex disease.3,4
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Owing to interindividual genetic variation, population-

based studies are a promising approach to increase our

understanding of complex genetic diseases. For example,

genome-wide association studies using population sam-

ples, may be used to map loci affecting complex traits.5

However, false-positive associations may be obtained if the

population under study is stratified. The transmission

disequilibrium test (TDT) avoids the problem of ethnic

from association by testing the difference between the

frequency of marker alleles transmitted from heterozygous

parents to the affected offspring and the frequency of

marker alleles not transmitted.6 Although the original use

of the TDT was to test for linkage in the presence of

population association, it can be used to test any marker

even if there is no prior evidence for association.7

However, the TDT is limited by the availability of DNA

samples from parents of the affected individuals. This

becomes a serious drawback particularly in epidemiological

studies of late-onset diseases. A population-based approach

does not need case-relative pairs, and careful matching for

ethnic background may circumvent the confounding by

ethnicity. But, because the description of genetic variation

in human populations is an important prerequisite for the

development of mapping strategies, an obvious question is

whether an analogous test of the TDT can be carried out on

population-based studies.

Mitchell8 developed a statistic (T), which measures

disease–marker associations, and it can be estimated from

case–control data. However, a test of significance for the T-

statistic was not developed. Furthermore, this statistic can

be estimated only in the unlikely situation of a population

that has no serious deviations from Hardy–Weinberg

proportions, a premise that cannot be achieved if the

population is stratified. Thus, a more general method is

needed to estimate the differential transmission of marker

alleles to the affected offspring, based on population data.

We developed a statistic (T-value) to estimate the propor-

tion of transmission of a potential high-risk marker allele

from heterozygous parents to the affected offspring. To

estimate the T-value, it is not necessary to assume that

Hardy–Weinberg equilibrium holds; in fact, it can be

estimated in very diverse scenarios of population structure.

Methods
Let us suppose a genetic marker with two codominant

alleles, A1 and A2. The TDT uses heterozygous parents for

the genetic marker and it compares the frequency by which

a ‘high-risk’ marker allele (A1) is transmitted to the affected

offspring, to the frequency by which the alternate marker

allele (A2) is transmitted to the same offspring.6 To carry

out the TDT in a case–control study, we have to estimate

the number of alleles, both A1 and A2, transmitted from

heterozygous parents to their affected offspring.

The T-value can be written as:

T ¼ x1

x1 þ x2
ð1Þ

where x1 and x2 are, respectively, the number of alleles A1

and A2 transmitted from heterozygous parents to the

affected offspring. By definition, x1 and x2 can be

calculated as

x1 ¼ x1;11 þ x1;12; ð2Þ

x2 ¼ x2;22 þ x2;12 ð3Þ

where xi,ij (i, j¼ 1, 2) is the number of alleles Ai inherited

from heterozygous parents to the affected offspring with

genotype AiAj.

In population-based studies, we do not have information

about the genotypes of the parents of the cases; therefore,

we can assume that the different xi,ij values, as well as the T-

value, are random variables. If we define ji,ij as the

probability that one allele Ai taken from a patient with

genotype AiAj had been inherited from a heterozygous

parent, the probability distributions of the different xi,ij are

Pðx1;11 ¼ rÞ ¼
2P

r

� �
jr

1;11ð1 � j1;11Þ
2P�r ;

r 2 ½0; 1; . . . ;2P�
ð4Þ

Pðx1;12¼sÞ ¼
H

s

� �
js

1;12ð1 � j1;12Þ
H�s;

s 2 ½0;1; . . . ;H�
ð5Þ

Pðx2;12 ¼ tÞ ¼ H
t

� �
jt

2;12ð1 � j2;12Þ
H�t ; t 2 ½0;1; . . . ;H� ð6Þ

Pðx2;22 ¼ uÞ ¼
2Q

u

� �
ju

2;22ð1 � j2;22Þ
2Q�u;

u 2 ½0;1; . . . ;2Q�
ð7Þ

where P, H, and Q are the number of sampled patients with

genotypes A1A1, A1A2, and A2A2, respectively.

The above probability distributions depend on the

system of matings and the genetic structure of the sampled

population. Although more complex situations can be

envisioned, we will focus our analysis on four general

models: (1) one population with random mating, (2) one

population without random mating, (3) several popula-

tions with random mating within them, and (4) several

populations without random mating within them.

One population with random mating (model T1)

The simplest situation occurs when the sampling is made

on a single panmictic population; therefore, the ji,ij

probabilities can be calculated using the Hardy–Weinberg

genotype frequencies. Table 1 shows the frequencies of the
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different matings occurring in the population, the off-

spring proportions of each mating, as well as the number of

A1 or A2 alleles inherited by each offspring from A1A2

heterozygous parents. According to Table 1, the different

ji,ij probabilities are j1,11(1)¼j1,12(1)¼ p2 and

j2,12(1)¼j2,22(1)¼ p1, where p1 and p2 are the frequencies

of the A1 and A2 alleles in the sampled population, and the

number 1 in parentheses refers to the first considered

model. These results show that, within a random mating

population, the probability of an A1 allele from a patient

with genotype A1A1 or A1A2 being inherited from a

heterozygous parent equals the frequency of the allele A2

in the general population. Likewise, the probability of an

A2 allele from a patient with either genotype A2A2 or A1A2

being inherited from a heterozygous parent is equal to the

frequency of the allele A1 in the general population.

The expected value (m) and variance (s2) of the random

variables x1 and x2 under this model can be calculated as

mx1ð1Þ ¼ 2Pj1;11ð1Þ þ Hj1;12ð1Þ; ð8Þ

s2
x1ð1Þ ¼ 2Pj1;11ð1Þð1 � j1;11ð1ÞÞ þ Hj1;12ð1Þð1 � j1;12ð1ÞÞ ð9Þ

mx2ð1Þ ¼ 2Qj2;22ð1Þ þ Hj2;12ð1Þ; ð10Þ

s2
x2ð1Þ ¼ 2Qj2;22ð1Þð1 � j2;22ð1ÞÞ þ Hj2;12ð1Þð1 � j2;12ð1ÞÞ ð11Þ

The probability distribution of T can be determined by the

Monte–Carlo method, according to equation (1) and the

different probability distributions of the xi,ij. An estimator of

the proportion of A1 alleles transmitted from heterozygous

parents to the affected offspring can be calculated by taking

the expectation mT(1) of the distribution of T; therefore

mTð1Þ ¼
mx1ð1Þ

mx1ð1Þ þ mx2ð1Þ
ð12Þ

The null hypothesis (mx1(1)�mx2(1)¼0 or mTð1Þ ¼ 1
2 ) of

nondifferential transmission of the allele A1 from hetero-

zygous parents to the affected offspring can be tested by the

statistic

Dð1Þ ¼
mx1ð1Þ � mx2ð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

x1ð1Þ þ s2
x2ð1Þ

q ; ð13Þ

that follows, approximately, a standard normal distribution

if the number of sampled gene copies is large enough. A

permutation test can be performed by simulations of the

probability distribution of T according to equation (1).

One population without random mating (model T2)

The departure from the Hardy–Weinberg equilibrium

causes a correlation between uniting gametes within the

population, which can be measured by the inbreeding

index F.9 Table 1 shows the mating frequencies with an

inbreeding index F. According to the values in Table 1, the

different ji,ij probabilities are

j1;11ð2Þ ¼ p2
p1ð1 � FÞ

p1ð1 � FÞ þ F

� �
ð14Þ

j1;12ð2Þ ¼ p2; ð15Þ

j2;12ð2Þ ¼ p1; ð16Þ

j2;22ð2Þ ¼ p1
p2ð1 � FÞ

p2ð1 � FÞ þ F

� �
ð17Þ

where the number 2 in parentheses refers to the second

used model. It is noteworthy that the probabilities j1,12(2)

and j2,12(2) are the same as those calculated under the one-

population-random-mating model (MODEL T1).

Compared to model T1, the above equations show that a

general effect of positive inbreeding is to decrease the

Table 1 Frequency of the different matings occurring within a panmictic population (model T1) and within an inbred
population (model T2), as well as the number of alleles A1 and A2 transmitted from heterozygous parents to the different kinds
of offspringa

Frequency Offspring proportion
Number of alleles A1 from

heterozygous parents
Number of alleles A2 from

heterozygous parents

Mating (1)
Model T1

(2a)
Model T2

(2b) A1A1 (3) A1A2 (4) A2A2 (5) A1A1 (6) A1A2 (7) A2A2 (8) A1A2 (9)

A1A1	A1A1 p1
4 p1

4+p1p2F 1 0 0 0 0 0 0

A1A1	A1A2 4p1
3p2 4p1

3p2(1�F) 1
2

1
2 0 1 0 0 1

A1A1	A2A2 2p1
2p2

2 2p1
2p2

2(1�F) 0 1 0 0 0 0 0

A1A2	A1A2 4p1
2p2

2 4p1
2p2

2(1�F) 1
4

1
2

1
4 2 1 2 1

A1A2	A2A2 4p1p2
3 4p1p2

3(1�F) 0 1
2

1
2 0 1 1 0

A2A2	A2A2 p2
4 p2

4+p1p2F 0 0 1 0 0 0 0

aThe different probabilities ji,ij (see text) can be calculated according to the equations: j1;11 ¼ 1
2

P
ðcolumnð2Þ	

columnð3Þ	columnð6ÞÞ=
P

ðcolumnð2Þ	columnð3ÞÞ, j1,12¼
P

(column (2)	 column (4)	 column (7))/
P

(column (2)	 column (4)), j2,12¼P
(column (2)	 column (4)	 column (9))/

P
(column (2)	 column (4)), j1;11 ¼ 1

2

P
ðcolumnð2Þ	columnð5Þ 	columnð8ÞÞ=

P
ðcolumnð2Þ	

columnð5ÞÞ.
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probabilities of transmission from heterozygous parents to

the homozygous offspring. The probabilities of transmis-

sion to the heterozygous offspring are not affected by

inbreeding. In other words, because of the reduction in

heterozygosity under positive inbreeding, the number of

alleles transmitted from heterozygous parents will be

reduced under model T2 compared to model T1.

The expectations and variances of the number of alleles

A1 and A2 transmitted from heterozygous parents to the

affected offspring can be estimated by equations (8)–(11).

The testing of the null hypothesis of nondifferential

transmission can be performed using the method in the

one-population-random-mating model.

Several populations with random mating within them
(model T3)

Let us suppose that the population under study is divided

into k subpopulations of equal size and are in Hardy–

Weinberg equilibrium. If the subpopulation source of each

sampled individual is unknown, a correction that takes

into account the allele frequency differences between the

subpopulations must be performed and the ji,ij probabil-

ities must be averaged across all the subpopulations. After

averaging the ji,ij probabilities, we obtain

j1;11ð3Þ ¼ p2
p1ð1 � 3FSTÞ þ FSTð1 � g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FSTp1p2

p
Þ

p1ð1 � FSTÞ þ FST

 !
ð18Þ

j1;12ð3Þ ¼
p2ð1 � 3FSTÞ þ FSTð1 þ g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FSTp1p2

p
Þ

1 � FST
; ð19Þ

j2;12ð3Þ ¼
p1ð1 � 3FSTÞ þ FSTð1 þ g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FSTp1p2

p
Þ

1 � FST
ð20Þ

j2;22ð3Þ ¼ p1
p2ð1 � 3FSTÞ þ FSTð1 � g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FSTp1p2

p
Þ

p2ð1 � FSTÞ þ FST

 !
ð21Þ

where p1 and p2 refer to the average gene frequencies of the

alleles A1 and A2 in the total population, and the number 3

in parentheses refers to the third studied model. FST is the

correlation between two gametes drawn at random from

each subpopulation, and it measures the degree of genetic

differentiation between subpopulations.9,10 FST is equal to

sp
2/p1p2, where sp

2 is the variance of the allele frequencies

across the subpopulations. g1 and g2 are values of skewness

of the frequency distributions of the alleles A1 and A2 over

all the subpopulations; for a diallelic locus g1¼�g2.

The expectations and variances of the number of alleles

A1 and A2 transmitted from heterozygous parents to the

affected offspring can be estimated using the correspond-

ing ji,ij(3) probabilities according to equations (8)–(11).

The hypothesis testing of the nondifferential transmission

can be done as explained in the last two models.

Several populations without random mating within
them (model T4)
If the population under study is divided into k subpopula-

tions of equal size and within them the Hardy–Weinberg

equilibrium does not hold, the effects of population

structure and inbreeding must be taken into account. The

ji,ij probabilities within each subpopulation are given

according to the one-population-nonrandom-mating mod-

el (T2); therefore, the corresponding values in the general

population are the weighted averages of the ji,ij’s across the

subpopulations. Namely,

j1;11ð4Þ ¼ j1;11ð3Þð1 � FISÞ
p1ð1 � FSTÞ þ FST

p1ð1 � FITÞ þ FIT

� �
ð22Þ

j1;12ð4Þ¼j1;12ð3Þ ð23Þ

j2;12ð4Þ ¼ j2;12ð3Þ ð24Þ

j2;22ð4Þ ¼ j2;22ð3Þð1 � FISÞ
p2ð1 � FSTÞ þ FST

p2ð1 � FITÞ þ FIT

� �
ð25Þ

where FIT is the correlation between two uniting gametes

relative to the total population and measures the reduction

in heterozygosity of an individual relative to the total

population. FIT takes into account both the effects of

nonrandom mating within subpopulations (FIS) and the

effects of population subdivision (FST), and they are related

by the equation (1�FIT)¼ (1�FIS)(1�FST).10 It is noteworthy

that the probabilities j1,12(4) and j2,12(4) are not affected by

nonrandom mating within subpopulations, and they are

the same as the corresponding probabilities on the several

populations-random-mating model.

The expectations and variances of the number of alleles

A1 and A2 transmitted from heterozygous parents to the

affected offspring can be estimated using the correspond-

ing ji,ij(4) probabilities according to equations (8)–(11).

The hypothesis testing of the nondifferential transmission

can be done as explained in the last three models.

Results
As previously described, there are several parameters that

determine the value of the probabilities ji,ij. These include

the frequency of the suspected allele in the general

population (p1), the frequency of the same allele in the

case sample (q1), and the different F values. To examine the

behavior of the T-value, we calculated the probabilities ji,ij

under three general conditions:

1. The p1 and q1 frequencies were allowed to change, but

the increased frequency of the allele A1 in cases relative

to general population was fixed at 20%.
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2. The frequency of A1 in the general populations was

fixed at 0.40, and the frequency of A1 in the cases was

allowed to take various values.

3. The p1 and q1 were, respectively, fixed to 0.40 and 0.50,

but the vector (P, H, Q) was variable.

A drawback in using the different models in a case–

control study is that the total departure from Hardy–

Weinberg proportions in the general population can only

be estimated using the control genotypes. In other words,

only one estimate of the FIT value can be obtained, yet

different FIS, FST pairs can result in the same FIT. Therefore,

if we only know the total reduction of heterozygosity in

the general population (FIT), we are not aware of the

differential contributions of both the effects of nonrandom

mating within subpopulations (FIS) and the effects of

population subdivision (FST). A conceivable solution to

this problem is to estimate the T-value under two different

assumptions: one, that there is no population subdivision

(FST¼ 0) and that all the departure from Hardy–Weinberg

proportions is due to the effects of nonrandom mating

within the population (FIS¼ FIT40); two, the general

population is subdivided (FST¼ FIT40), but there is random

mating within each subpopulation (FIS¼0).

Figure 1 shows the calculated T values by fixing the

relative increase in the frequency of the allele A1 in cases

relative to the general population at 20%. Since the models

T2 and T3 are particular cases of the model T4, they are the

upper and lower bounds of the estimated T-values accord-

ing to the model T4. It is noteworthy that the effects of

changes in the FIT are greater in model T3 than in model

T2. In other words, model T2 is less affected by changes in

the structure of the population. One reason for this result is

that nonrandom mating within subpopulations does not

affect the probabilities that one heterozygous case has

received alleles from heterozygous parents (see equations

(15) and (16)).

If we know the FIT value, but do not know the FIS and FST,

the difference between the estimates of T according to

models T2 and T3 can be understood as the degree of

accuracy in our estimates. As the effect of nonrandom

mating on the T-value is lesser than the effect of the

subpopulation differentiation (Figure 1), our main concern

is the latter factor. According to Figure 1, model T2 and

model T3 produce similar estimates of the T-value when FIT

values are less or equal to 0.25 and allele frequencies are at

least 0.10. Slatkin11,12 has shown that the ratio FST/(1�FST)

is roughly proportional to the divergence time between

two populations, and it is equal to t/2Ne, where t is the

divergence time in generations and Ne is the effective

population size of each subpopulation, assuming equal

sizes for both. For example, for an FST equal to 0.25 and an

effective size equal to 500, the expected divergence time is

B300 generations or B7500 years, assuming 25 years per

generation. Although these estimates of divergence times
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Figure 1 Graphs show the effect of the total population
inbreeding (FIT) on the T-value when the increase in the
frequency of the high-risk allele in cases is fixed at 20%
relative to controls, and the allele frequencies in cases and
controls are allowed to change: (a) p1¼0.10 and
q1¼0.12; (b) p1¼0.20 and q1¼0.24; (c) p1¼0.30 and
q1¼0.36; (d) p1¼0.40 and q1¼0.48.
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must be taken with caution because of their unknown

error, they do indicate that for small divergence times, the

models T2, T3, and T4 produce very similar estimates of the

T-value.

Another factor affecting the T-value is the degree of

increase in the frequency of the high-risk allele in cases

relative to the general population. To explore this effect, we

fixed p1 at 0.40, while q1 was allowed to change from 0.50

to 0.80. According to Figure 2, a FITp0.30 combined with

any allele frequency in cases produce very similar estimates

of the T-value in the three models T2, T3, and T4. Although

we chose a frequency of 0.40 for the high-risk allele in the

general population, less frequent alleles gave the same

results (data not shown).

If the allele frequencies are fixed both in the general

population and in the cases, there is still another factor

that can influence the estimates of the T-value; that is, the

vector (P, H, Q) in cases, or the number of people with

genotypes A1A1, A1A2, and A2A2, respectively. For example,

a sample with P¼250, H¼500, and Q¼250 has a different

(P, H, Q) vector from a sample with P¼300, H¼400, and

Q¼300; yet both samples have the same allele frequencies.

The rationale to analyze the (P, H, Q) vector is because if the

population from where the cases are sampled is structured,

we expect to find a similar degree of structure in the case

sample. Figure 3 shows the effect of several combinations

of P, H, and Q by fixing, respectively, the frequency of the

high-risk allele to 0.40 and 0.50 in the general population

and in cases. A striking result is that the three models T2,

T3, and T4 converge to the same T-value when the degree

of departure from Hardy–Weinberg proportions is the

same in both cases and the general population. This result

has a very important practical implication. For example, a

highly recommended first analysis in a case–control study

is to test if the Hardy–Weinberg equilibrium holds both in

the case and control samples. As it was shown, any

deviations from Hardy–Weinberg proportions affect the

different probabilities of transmission from heterozygous

parents, but, if the factors controlling the genotype

frequencies have the same effect both in the general and

the affected populations, the differences between the

models T2, T3, and T4 disappear.

In most of the situations, the exact structure of the

population under study is unknown and the FIT value is

commonly the sole available estimate of population

stratification. Since the true model may be unknown in

the majority of the studies, we assessed type I error and

power of the four different models under different popula-

tion scenarios (Table 2). We assumed the same FIT for both

general and affected populations; 100 000 simulations were

used and a random sample of 100 cases was taken in each

simulation. The frequency of the high-risk allele in the

general population was fixed to 0.10. Higher allele

frequencies did not affect appreciably type I error, but

increased the power of the different models (data not
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Figure 2 Graphs show the effect of the total population
inbreeding (FIT) on the T-value when the frequency of the
high-risk allele in controls is fixed at 0.40, and the allele
frequencies in the cases are allowed to change: (a)
q1¼0.50; (b) q1¼0.60; (c) q1¼0.70; (d) q1¼0.80.
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shown). The critical point to reject the null hypothesis

(D¼0, see equation (13)) was chosen to attain a signifi-

cance level of 0.05 (B71.96 standard deviation) for the

true model under the different population scenarios. In the

simplest situation, there is no population subdivision and

there is random mating within a unique population

(FIS¼ FST¼ FIT¼0). The four models were equivalent in

this first population setting. With nonrandom mating

within a single population (FIS¼ FIT40, FST¼ 0), the true

model T2 was equal to the model T4. In this case, model T1

showed a higher type I error (B7%) and model T3 had a

lower significance level (B2�4%). The power of the four

models was similar under this second population scenario

and did not change greatly for FIT values greater than 0.10

(data not shown). When the population is subdivided, but

there is random mating within each subpopulation

(FST¼ FIT40, FIS¼0), the true model T3 was equal to the

model T4. T1 and T2 models tended to give a higher false-

positive rate. Although the power of the four models was

similar, model T1 showed slightly superior power due to its

high type I error (B7�11%). Large differences were not

observed for FIT values greater than 0.10 (data not shown).

In the last situation, several subpopulations with nonran-

dom mating within them (FIS40, FST40, FIT40); the T1,

T2, and T3 models showed a higher false-positive rate

compared to the true model T4. However, the difference

between the model T3 and the true model T4 was at most

1.5% for FIT¼ 0.10. Similar results were observed for greater

values of population stratification (data not shown).

Conclusions
We presented a novel population-based method to esti-

mate the differential transmission of marker alleles from

heterozygous parents to affected offspring. This method

expands the previous procedure proposed by Mitchell8 by

providing an estimate of the differential transmission of

alleles from heterozygous parent to their affected offspring

and a statistical test that can be used under different

population structures. Unlike Mitchell’s approach, the

current test does not assume Hardy–Weinberg proportions

and can be adjusted to deal with deeper levels of

population stratification. This method attains the same

goals of the traditional family-based TDT, but it eliminates

the need for recruitment of family members that are

particularly difficult to obtain in late-onset diseases or large

population-based epidemiological studies. Our analyses

showed that model T3 was the most robust approach

under several scenarios of population structure. Further-
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Figure 3 Graphs show the effect of the total population
inbreeding (FIT) on the T-value when the vector (P, H, Q) is
variable in cases. The number of cases was fixed to 1000 is
varuable with p1¼0.40, q1¼0.50, and different vectors.
(a) Vector (250, 500, 250); (b) vector (300, 400, 300); (c)
vector (350, 300, 350); (d) vector (400, 200, 400).
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more, for FIT values of 0.30 or less, all the models tested

gave very similar estimates of the T-value. The usefulness of

this procedure can be confirmed by comparing the results

obtained from traditional family-based TDT with those

from population-based TDT.

Population association studies between two loci that are

linked are widely used to map loci affecting complex

traits.13,14 One of the major advantages of the population-

based studies over the family approaches is that they avoid

recruitment of family members, which is particularly

difficult when studying diseases with late onset. Case–

control studies have often provided the first line of

evidence that a putative disease susceptibility locus or a

marker in linkage disequilibrium exists; for example, the

observed association between the APOE genotype and

Alzheimer’s disease.15 However, the use of the case–control

approach to uncover disease–marker associations has been

disappointing. In general, initial reports of strong associa-

tions cannot be reproduced or are not supported by larger

well-conducted studies.14,16 The results have been incon-

sistent perhaps due to modest gene effects per se, but more

likely to problems with study design such as low statistical

power or the lack of a comparable control population to

determine the underlying gene frequencies. Another

explanation that can limit the validity of the epidemiolo-

gical case–control design relates to the potential for

confounding that can result from population stratification

or genetic admixture.17 – 19 For example, if the population

under study is heterogeneous, if mating does not occur

randomly, or if the cases and controls are not ethnically

Table 2 Type I error and power of the D-statistic with a random sample of 100 cases under four different population
scenarios, and a high-risk allele frequency of 0.10 in the general population

Power to reject different alternative hypothesis (Ha:T¼ Ta)

Population scenario Type I errora 0.55 0.60 0.65

One population, random mating
FIS¼ FST¼ FIT¼0.0

Model T1 (T2,T3,T4) 0.050 0.188 0.562 0.906

One population, nonrandom mating
FIS¼ FIT¼0.05, FST¼0.0

Model T1 0.066 0.281 0.694 0.957
Model T2 (T4) 0.050 0.246 0.640 0.934
Model T3 0.040 0.235 0.643 0.941

FIS¼ FIT¼0.10, FST¼0.0
Model T1 0.073 0.232 0.664 0.953
Model T2 (T4) 0.050 0.170 0.546 0.888
Model T3 0.024 0.135 0.533 0.913

Several populations, random mating
FST¼ FIT¼0.05, FIS¼0.0

Model T1 0.077 0.309 0.706 0.962
Model T2 0.060 0.278 0.675 0.942
Model T3 (T4) 0.050 0.258 0.677 0.950

FST¼ FIT¼0.10, FIS¼0.0
Model T1 0.113 0.316 0.770 0.980
Model T2 0.085 0.243 0.663 0.943
Model T3 (T4) 0.050 0.215 0.670 0.960

Several populations, nonrandom matings
FIT¼0.05, FIS¼ FST¼0.025

Model T1 0.091 0.355 0.779 0.979
Model T2 0.071 0.325 0.737 0.965
Model T3 0.060 0.301 0.739 0.972
Model T4 0.050 0.278 0.706 0.963

FIT¼0.10, FIS¼ FST¼0.051
Model T1 0.143 0.406 0.840 0.993
Model T2 0.112 0.332 0.754 0.976
Model T3 0.065 0.294 0.764 0.986
Model T4 0.050 0.232 0.699 0.975

aThe critical point to reject the null hypothesis corresponds to a significance level of 0.05 for the true model under each population scenario.
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balanced, a coincidental allele frequency difference can

emerge. Such an artifact is most likely to happen when the

disease occurs more frequently in an unidentified sub-

population, which also differs, by chance, in the frequency

of the tested allele.

To correct for population stratification, it is necessary to

detect it and quantify it. Pritchard and Rosenberg20 have

shown that approximately 15–20 unlinked microsatellite

loci are needed to test for stratification, and hundreds of

markers are required to identify subpopulations of recent

divergence time.21,22 Here we proposed a simpler approach

to measure population stratification. Although it is desir-

able to know the exact genetic structure of the population

under study, a simple measure such as FIT of total departure

of Hardy–Weinberg proportions is useful as a rough

estimate of population stratification. Since our method,

specifically model T3, is robust to major departures from

Hardy–Weinberg proportions, either by nonrandom mat-

ing within subpopulations or population subdivision, the

proposed test can be used in multiple epidemiological

settings. By using a few unlinked loci, Wright’s F-statis-

tics9,10 provide a simple and reliable way to assess the

genetic structure of the population under study. A limita-

tion of the use of the F-statistics is that without a priori

information about the population structure, it would be

impossible to discriminate between the effects of the

nonrandom mating within subpopulations and those due

to the population subdivision. An approximation can be

done by assuming that the total departure from Hardy–

Weinberg proportions in the general population (FIT) is

caused entirely by either nonrandom mating within

subpopulations (FST¼0, FIS¼ FIT40) or population sub-

division (FIS¼0, FST¼ FIT40). Based on the simulations

presented in this study, both approximations can provide

essentially the same estimates of the T-value when the

values for FIT are as large as 0.30, but type I error of the

different models may change depending on the exact

population structure. Specifically, in the presence of

nonrandom mating or population subdivision, model T1

overestimates the number of alleles transmitted from

heterozygous parents, leading to a higher type I error.

Model T3 showed the lowest false-positive rate (B2.4–

6.5%) with no significant lack of power compared to the

true model under the different population scenarios. In

other words, when the exact genetic structure of the

population is unknown, the most conservative approach is

to assume that total departure from Hardy–Weinberg

proportions is only due to the effects of population

subdivision. Also, due to theoretical reasons, we expect

that, within subpopulations, most of the matings occur

independently of the marker genotypes; therefore, popula-

tion stratification will be the main factor affecting the FIT

value. Although the degree of genetic differentiation

between populations depends, in part, on the marker

mutation rate, it has been shown that differences among

major human groups constitute only 3–9% of the total

genetic variation by using either high-mutation rate loci as

microsatellites23 or low-mutation rate loci as allozyme

genes.24 Therefore, it is very unlikely that FIT exceeds a

value of 0.30 in a population-based approach with careful

matching for ethnic background. Even though the pro-

posed method can be used when knowledge about

population subdivision is limited, this approach is flexible

enough to incorporate demographic or historic data about

the structure of the population when available. With this

approach, it will be also possible to carry out an analysis of

molecular variance (AMOVA)25 to quantify the different

components of variance that contribute to the total

inbreeding in the general population.

Although the proposed method uses population data,

the logistics of this procedure diverge greatly from the

traditional association studies. Traditional association

studies are designed to test for differences in the gene

frequencies between cases and controls. In contrast, the

proposed method evaluates the differential transmission of

marker alleles from heterozygous parents to the affected

offspring. In fact, it is possible, depending on the model

used, to have no differences in the allele marker frequen-

cies between cases and controls, and obtain a T-value

different from 1
2. It is necessary to emphasize that because

the controls are used to estimate population parameters

(frequency of the high-risk allele and FIT), a properly

conducted study should require that controls represent the

population that give rise to the cases. Thus, standard

epidemiological methods such as matching by ethnic

background must be used in the selection of the controls.

In summary, we presented a population-based TDT that

attains the same goals of the traditional family-based TDT

but without the recruitment of family members that are

particularly difficult to obtain in late-onset diseases. By

using simulations, model T3 proved to be the most robust

approach under several scenarios of population structure.

Although it can be useful to know the exact genetic

structure of the sample population, different models gave

very similar estimates of the T-value for FIT values of 0.30 or

less. Further work is needed to compare the results

obtained from traditional family-based TDT and popula-

tion-based TDT.
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